
Abstract- ELISA (Enzyme-Linked Immunosorbent Assay) Spot 
Assay is a method widely used by immunologists to enumerate 
cytokine -producing cells within a specific cell population. The 
result of ELISA is presented in an image containing numerous 
color spots .  We present a method to extract and to count the 
number of spots .  The proposed method is based on color 
analysis.  Since CIE L*u*v* space have linear perceptibility of 
color differences, we convert the RGB space to L*u*v* space. 
The system is trained to obtain the standard color of the 
spots and get the color difference image in L*u*v* space.  
According to the feature of the spots we design a special 
matched filters to filter out the noise and enhance the spots. 
Finally a binary image is obtained.  In the binary images, pixels 
in the spots have gray scale 255 and the others are 0. Our design 
makes it easy to analyze the perimeter and size of the spots in 
addition to counting them in the binary image. 
Keywords:  ELISA, Spot, Segmentation, CIE. 

 
I. INTRODUCTION 

 
ELISA Spot Assay is designed to detect cells that produce 

cytokines [1]. Cytokines are proteins readily secreted by 
immune cells upon stimulation by antigens they recognize. 
Test wells are coated with anti-cytokine antibody before cells 
were added. A certain number of cells and antigen are added 
to the precoated wells. During incubation, cells are stimulated 
to secrete cytokine. The secreted cytokine is captured by the 
precoated antibody. After washing, an enzyme-conjugated 
secondary anti-cytokine antibody and the substrate are added 
in sequence. A color reaction (red in this case) specific to 
cytokine-secreting cells occurs as a result of enzymatic 
reaction. Each red spot represents one cytokine-secreting cell. 
Since there can be hundreds of spots in a well of 70 mm 
diameter, counting the spots is labor intensive even one uses 
a dissecting microscope. The goal of this work is to produce a 
binary image containing pixels only in the spots.  
  The first step in the presented method is color space 
conversion.  It linearizes the perceptibility of color 
differences and provides a uniform color space.  The second 
step is to train the system by using the color of the spots to 
obtain an image of color differentials.  The third step is to 
apply the matched filter to identify the spots and remove the 
undesired noise.  Finally, the resulted image in step three is 
thresholded according to the histogram and gets the binary 
image containing only pixels in spots.   

In the next section, we describe these steps. The results 
are shown in Section 3. 
 

II. METHOD 
 
1. Color Space Conversion 
The spot colors provide good information for extracting the 
area of the spots. There were used to be over 40 color 
difference formulas before that CIE (Commission 

Internationale de I’Eclairage) recommended two standard 
color difference formulas: the CIE L*a*b* and the CIE L*u*v* 
for surface and lighting industries [2]. They attempted to 
linearize the perceptibility of color differences.  They 
provided a uniform color space.  We have chosen the L*u*v* 
space [3].  While video cameras use RGB representation for 
colors.  We must convert the representation from RGB to 
Lu*v*.  The CIE also has recommended the use of other 
color-coordinate systems, derived from CIE XYZ.  We 
convert the representation from RGB to XYZ space using Eq. 
(1). 
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0.180423  0.357580  0.412453

. (1) 

L*u*v* is based directly on CIE XYZ.  The non-linear 
relations for L*, u*, and v* are given below:  
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where un' and vn'  refer to the reference white Xn, Yn and Zn. 
The daylight standard D65 was used as reference illuminant. 
The non-linear relationship for Y is intended to mimic the 
logarithmic response of the eye.  Now we have converted the 
spot image in RGB space denoted as RGByxf ),(  to L*u*v* 

space denoted as ***),( vuLyxf . 
 
2. Train the system and obtain an image of color differentials  
To train the system to recognize the standard color of spots, 
we use a user interface method to select the spot area denoted 
as A(x,y). We used all pixels in the spot area to obtain the 
standard color denoted as ( *L

µ , *u
µ , *v

µ ).  We calculate the 

average for A(x,y). 

A Method to Extract Spots from the image of the ELISA (Enzyme-Linked 
Immunosorbent Assay) Spot Assay 

 
Chih-Yang Lin1, Yu-Tai Ching 1, B. A.Wu-Hsieh2 

1Department of Computer and Information Science, National Chiao Tung University, HsinChu, Taiwan 
2Graduate Institute of Immunology, National Taiwan University College of Medicine,Taipei, Taiwan 



Report Documentation Page

Report Date 
25 Oct 2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
A Method to Extract Spots From the Image of the ELISA
(Enzyme-Linked Immunosorbent Assay) Spot Assay 

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Department of Computer and Information Science Natinal Chiao
Tung University HsinChu, Taiwan 

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct
25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original document
contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



 

 /)),((

  /)),((

/)),((

**

**

**

NyxA

NyxA

NyxA

vv

uu

LL

∑
∑
∑

=

=

=

µ

µ

µ

, (5) 

where N is the number of pixels in the spot area.  
The only user interface required is to obtain the standard spot 
color ( *L

µ , *u
µ , *v

µ ) in this step.  No more other user 

activities are needed in the following steps.  The difference 
between two measured colors can be expressed using the CIE 
color difference formula. 

 5.02*2*2** ))()()(( vuLEuv ∆+∆+∆=∆ . (6) 

We substitute ***),( vuLyxf  and ( *L
µ , *u

µ , *v
µ ) to Eq. (6), 

then we can obtain the color difference image, ),( yxf∆ , 

which is the difference between each pixel of ***),(
vuL

yxf  

and the average spot pixel ( *L
µ , *u

µ , *v
µ ). 

3. Designing the Matched Filter 
The spots have an approximate shape of circle.  In fact, the 
intensity in a spot almost follows a 2-D Gaussian function as 
Eq. (7) in the following   

 
222 )(

1 ),( ryx eeyxg −+− == . (7) 
In Eq. (7) r is the radial distance measured from the center of 
the spot.  If we define R as the radius at which the intensity 
drops to one–half of its maximum value, we can write the 
spot profile function as 
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We can simplify Eq. (8) as 

 
222 /)(

1 2),( Ryxyxg +−= . (9) 
Now let us consider the detection of an arbitrary signal s(t) in 
additive Gaussian white noise.  If the signal is passed through 
a filter with transform function H(f), the output signal sO(t) is 
given by 

 ∫ += dfftj
o effSfHts )2()}()(){()( πη , (10) 

where S(f) is the Fourier transform of s(x,y), and )( fη is the 
noise spectrum.  By Schwartz’s inequality, it can be proved 
that the filter H(f), that maximizes the output SNR (Signal to 
Noise Ratio), is given by Ho(f) =S*(f) [4,5]. We apply inverse 
Fourier transform for both Ho(f) and S*(f). Since the input 
signal s(t) is a real value, ho(t)=s(-t).  Hence, in a 2-D case 
ho(x,y)=s(-x,-y). The optimal filter must have the same shape 
as the intensity profile.  In other words, the optimal filter is 
given by  
 ),(),( yxsyxh −−= . (11) 
We substitute Eq. (9) for Eq. (11) 
 ),(),(),( 11 yxgyxgyxh =−−= , (12) 

where ),(1 yxg  is a symmetry function, thus 

),(1 yxg = ),(1 yxg −− . This optimal filter with the 
impulse response h(x,y) is commonly known as the matched 
filter[6,7].  To obtain a zero mean filter, ),(1 yxg  is 
subtracted by the mean of the filter. 

 mmyxgyxg Ryx −=−= +− 222 /)(
1 2),(),( , (13) 

where m is the mean of the filter. 
The radius sizes of spots are ranged between 4 and 16 pixels. 
We only use pixel sizes 4, 8, 12 and 16 as the radius for 
designing the kernel of the matched filers.  Using more 
matched filter kernels could get more accurate results, but 
also takes more computing time.  Fig. 1 shows two of the 4 
kernels of matched filters. After applying matched filter, Most 
of noises could be removed and thus the spots were enhanced.  
It is useful for the following step. 

  
(a) 

 
(b) 

Fig. 1. 2-D matched filters used in our proposed method.  The 
radius size is (a) 4, and (b) 8. 

 
4. Obtain the Binary Image 
Finally, we threshold the resulted images based on the 
histogram analysis to get binary images.  Now we can easily 
to count the number of spots, size of spots, and measure 
perimeter 
 

III. RESULTS 
In this section, several images were tested and the results 
obtained by the proposed method are presented. The input 
images are color images in Jpeg format of size 1600 by 1200 
pixels (Fig. 2-x(a), where x means 1, 2, and 3).  Fig. 2-x(b) 
shows the distance measure. The results after matched 
filtering were applied are shown in Fig. 2-x(c).  The results 
after threshold are shown in Fig. 2-x(d).  The borders of spots 
Fig. 2-x(d) are overlaid to the initial image are shown in Fig. 
2-x(e).  The proposed methods were implemented on a PC 
with a Pentium III (800 MHz) CPU running on Windows 
2000 operating system.  The overall execution time for a 
1600x1200 pixels image took less than 5 minutes.  The radius 
sizes used for filter kernel were 1,2,3 and 4, respectively.  It 
took a quit long time for a 1600x1200 image.  Thus we 
reduce the resolution from 1600x1200 to 800x600 and 
400x300 for those images, respectively.  The 800x600 images 
took about 25 seconds.  The radius sizes used for filter kernel 



are 2,4,6 and 8, respectively.  The execution time for 
800x600 images is much faster than the previous case.  In the 
case of 400x300 images, it took about only 3 seconds.  The 
radius sizes used for filter kernel are 1,2,3 and 4, respectively. 
The results of 1600x1200, 800x600, and 400x300 have 
almost the same quality, but the execution time is 
significantly different.  Because the larger images the larger 
the radius sizes are needed for matched  filter kernels.  Since 
the operations of 2-D convolution need large computation 
time, we suggest using 400x300 or 800x600 pixel images 
instead of 1600x1200.  
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Fig. 2. 2-x(a) are the tested images for proposed method. 2-
x(b) are the color distance images of 2-x(a). 2-x(c) are the 
results after matched filters. 2-x(d) are the final results. 2 -x(e) 
are the final results overlying the border of  2-x(d) 
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